Distance transform methodology for advanced impact damage characterisation of composite laminates by X-ray computed tomography

Leonard, Fabien; BAM Bundesanstalt fur Materialforschung und -prufung; Germany

Bruno, G.; Federal Institute for Materials Research and Testing (BAM); Germany
Leonard, F.; Federal Institute for Materials Research and Testing (BAM); Germany

ID: ECNDT-0504-2018
Session: CT-Applications 1
Room: G3
Date: 2018-06-13
Time: 10:00 - 10:20

During their life cycle, composite structures used in aircraft structures can be subjected to high- and low-velocity impact loading. High velocity impact damage is usually easy to detect as it creates visible external damage. Low-velocity impacts are more complex to assess because, although significant damage can be generated internally, there can be little indication of external damage on the impacted surface, leading to the term BVID. Impact damage, especially barely visible impact damage, is therefore of primary concern for design and maintenance of modern aircraft composite structures. As a result there is a concerted research effort to improve the damage resistance and tolerance of these materials.
One of the great strengths of X-ray computed tomography over conventional inspection methods (ultrasound, thermography, radiography) is that it can image damage in 3D. However for curved or deformed composite panels it can be difficult to automatically ascribe the damage to specific plies or inter-ply interfaces. An X-ray computed tomography (CT) data processing methodology is developed to extract the through-thickness distribution of damage in curved or deformed composite panels. The method is applied to [(0°/90°)2]s carbon fibre reinforced polymer (CFRP) panels subjected to low velocity impact damage (5 J up to 20 J) providing 3D ply-by-ply damage visualisation and analysis. Our distance transform approach allows slices to be taken that approximately follow the composite curvature allowing the impact damage to be separated, visualised and quantified in 3D on a ply-by-ply basis. In this way the interply delaminations have been mapped, showing characteristic peanut shaped delaminations with the major axis oriented with the fibres in the ply below the interface. This registry to the profile of the panel constitutes a significant improvement in our ability to characterise impact damage in composite laminates and extract relevant measurements from X-ray CT datasets.